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Series Impedance of Overhead and
Underground Lines

The determination of the series impedance for overhead and
underground lines is a critical step before the analysis of a distribution
feeder can begin.

The series impedance of a single-phase, two-phase (V-phase), or
three-phase distribution line consists of the resistance of the
conductors and the self- and mutual inductive reactances resulting
from the magnetic fields surrounding the conductors.

The resistance component for the conductors will typically come
from a table of conductor data such as that found in Appendix A of
Kersting Book.
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Overview — What's phase impedance
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Overview — Why Carston’s equation

John Carston used a fictitious “dirt”

For a transposed & balanced line: _
conductor carrying current /; to

Z;=1;+j * 0.12134 = In e () /mile

GMR; represent the ground return path.
Unfortunately, we cannot get the
However, distribution lines are parameters of this dirt conductor.

untransposed, we have to retain the
identity of the self- and mutual

: John Carston used an “image”
impedance terms:

conductor method to calculate

1
Zjj = 1; +j0.12134 * In MR Q/mile primitive self —and mutual -
1 i impedances:
Zij = j0.12134 « lnD— Q/mile Zi; = 1; + 0.09530 +
ij . 1
j0.12134(In 7 + 7.93402)
However, this is still not enough as Q/mile )
distribution systems are also z;j = 0.09530 +j0.12134(1n; +
unbalanced, we have to consider 7.93402)Q/mile N

ground return path effect.
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Overview — Primitive impedances v.s.

Phase impedances
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Primitive self- and mutual-

*— impedances calculated using

Carston’s equation

Neutral 1s modeled as an
individual conductor. Hence,
7 1s 4x4 1n this case.

primitive

Using Kron reduction,
neutral conductor’s impact
can be rounded into the

phase conductor. Hence, Z,
1s 3x3.
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Series Impedance of Overhead Lines

The inductive reactance (self and mutual) component of the impedance i1s
a function of the total magnetic fields surrounding a conductor. Fig.l
shows conductors 1 through » with the magnetic flux lines created by
currents flowing in each of the conductors.

Fig.1 Magnetic field
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Series Impedance of Overhead Lines

The currents 1n all conductors are assumed to be flowing out of the page. It
1s further assumed that the sum of the currents will add to zero.

I; + Lyt tl++1,=0 (1)

The total flux linking conductor i is given by

L

—N*dh — —7 N ! 1
Ai=N*¢p = 2 * 10 *(Il*lnDi1+ I[*lnGM + In*lan)

(2)
where
. N = Number of times the line of flux surrounds
the conductor. For this case N=1
D, 1s the distance between conductor 7 and
conductor 7 (ft)

S_— / *GMR; 1s the geometric mean radius of
Fig.1 Magnetic field conductor 7 (ft)
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Series Impedance of Overhead Lines

The inductance of conductor 7 consists of the “self-inductance” of
conductor i and the “mutual inductance” between conductor 7 and
all of the other n — 1 conductors. By definition,

Self-inductance:

Lﬁ=’}—§"= 241077 + Ini H/M (3)

Mutual inductance:

Lin—ii”: 2% 1077 * lni_ H/M (4)

I?’l m
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Transposed Three-phase Lines

High-voltage transmission lines are usually assumed to be transposed
(each phase occupies the same physical position on the structure for one
-third of the length of the line). In addition to the assumption of
transposition, it 1s assumed that the phases are equally loaded (balanced
loading).

With these two assumptions, it 1s possible to combine the “self” and
“mutual” terms 1nto one “phase” inductance.

Phase inductance:

L=2%10"7 * In—_ H/M (5)
GMR;

where

Deq:vDab * Dpe * Deg 1t (6)

D, D,. and D_ are the distances between phases.
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Transposed Three-phase Lines

Assuming a frequency of 60 Hz, the phase inductive reactance is
given by

Phase reactance:

X; = @ * L;=0.12134 * In—* Q/mile (7)

The series impedance per phase of a transposed three-phase line

consisting of one conductor per phase 1s given by
Series impedance:

zi=r+j 012134 * In—°L Q/mile (8)
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Untransposed Distribution Lines

- Because distribution systems consist of single-phase, two-phase, and untransposed three-
phase lines serving unbalanced loads, it is necessary to retain the identity of the self- and
mutual impedance terms of the conductors.

- The resistance of the conductors is taken directly from a table of conductor data.
Equations (3) and (4) are used to compute the self- and mutual inductive reactances of
the conductors.

” 2*10 HGT H/M (3)

Ly, =2in !n =2 %1077 *In— H/M (4)

in
- The inductive reactance will be assumed to be at a frequency of 60 Hz, and the length of
the conductor will be assumed to be 1 mile. With those assumptions, the self- and mutual
impedances are given by

1
Z; = 1; +j0.12134 * In - O/mile (9)

MR,
zij = j0.12134 « lnE Q/mile (10)

- L]
However, this is not enough, as we also have to take into account the ground return
path for the unbalanced currents.
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Untransposed Distribution Lines

- In 1926, John Carson published a paper where he developed a set of equations for
computing the self- and mutual impedances of lines taking into account the return
path of current through ground [1].

- Carson's approach was to represent a line with the conductors connected to a source
at one end and grounded at the remote end.

- Fig.2 illustrates a line consisting of two conductors (7 and j) carrying currents (/; and
[) with the remote ends of the conductors tied to ground. A fictitious “dirt”
conductor carrying current 7, is used to represent the return path for the currents.

z,

- —> ]
Wg /

_ _ Ground
I T . T o S Tk L O IR N TR L L, Tl "G THL T ™Y TR

—>1ls zy [ Zjg l’zfd

Fig.2 Two conductors with dirt return path

[1] Carson, J.R., Wave propagation in overhead wires with ground return, Bell System Technical Journal, 5, 539, 1926.
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Untransposed Distribution Lines

In Fig.2, Kirchhoff's voltage law (KVL) 1s used to write the equation for the voltage
between conductor i and ground:

Vig=zii*xli+zjj*lj+zigxlqg — (Zgqg *Iqg + Zgq; * I; + 24 * I})

Collect terms in Equation (11): (11)

Vig = (Zii —2q) * I; + (Zij — 2qj) * Ij + (Zia — Zaa) * 14

._wifw (12>
+H’I" — .E..
EH )

Ve +—— AN

V. —>].

g /
_ _ Ground
W T W VS Yo W R N . EE o VAN VMM . NG, Tl TN TER. TR Y B TER U %

—s 1 zy [ Zjg J' Zid

Fig.2 Two conductors with dirt return path
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Untransposed Distribution Lines

Vig = (Zij — Zan) * 1I; + (Zij — Zqj) * i + (Zia — Zaa) * Ia
From Kirchhoff's current law (12)

Substitute Equation (13) into Equation (12) and collect terms:

Vig = (Zii + Zaa — Zai — Zia) * I; +(Zij + Zaa — Zaj — Zia) * I

Equation (14) is of the general form (14)
Vig = Zii * I; + Zj; * I (15)

where g S
Zii = Zjj t Zaq — Zgi — Zid (16)

Zij = Zij + Zga — Zaj — Zia (17)
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Untransposed Distribution Lines

1
z;; = 1; +j0.12134 * In v Q/mile (9) Z; =2j +Zgq — Zqi — Zia (16)
i
1 ~
Z-j=j0.12134*lnD— (Q/mile (10) Zij = zij + Zgqg — Zaj — Zia  (17)
ij
In Equations (16) and (17), the “hat” impedances are given by Equations (9) and (10).
Note that in these two equations the effect of the ground return path is being “folded”
into what will now be referred to as the “primitive” self- and mutual impedances of the

line. The “equivalent primitive circuit” 1s shown 1n Fig.3.

Zji
+.—_/\/\/\/_fwv-\ .+
—> . a
‘ Zj sy 24
| — t
V}g J ng

— it = — Ground
W W R W R ED YR SR U WG W WL W WD WELER o W D WD .

Fig.3 Equivalent primitive circuit
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Untransposed Distribution Lines

—

Q/mile  (9)  Zj; =2 +Zgq — Zgi — Ziga~ (16)

1
Z; =1; +j0.12134 = |
ZH Tl j * HGMR

[

—_—

1
Z;j = j0.12134 + lnF Q/mile (10) Zjj = Zjj + Zgqg — Zgj — Zia  (17)

ij
Substituting Equations (9) and (10) of the “hat” impedances into Equations (16) and (17),
the primitive self-impedance is given by
Zii =1+ jXii + Tq + jXaq — JXan — JXnd
—_— . L 1 . 1 1
Zji =1;+13 +j0.12134 = (In MR, + In GMRd In Doy In Ddi)

—~ : 1 Dig*Dg;
Z; =Tq+ 1 +]0.12134*(lnm+1n;TRdJ) (18)

In a similar manner, the primitive mutual impedance can be expanded:

Zij = JXij +1q + jXqq — jXaj — JXiq
_ : 1 Dqgj*Dig 1
=14 +j0.12134 * (In oy + In oniry) (19)
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Untransposed Distribution Lines

Zij =71q +1;+j0.12134 * (In MR, + In G'im:f) (18)
7 — ; 1 Dgj*Dig 1
Zij = 1q +]0.12134 * (lnDU_ + In GMR, ) (19)

The obvious problem in using Equations (18) and (19) is
the fact that we do not know the values of the resistance
of dirt (r,), the geometric mean radius of dirt (GMR)),
and the distances from the conductors to dirt (D ,, D, ,
D, ;,, D,.). This 1s where John Carson's work bails us out.
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Carson’s Equations

- Since a distribution feeder 1s inherently unbalanced, the most
accurate analysis should not make any assumptions regarding the
spacing between conductors, conductor sizes, and transposition.

- In Carson's 1926 paper, he developed a technique whereby the
self- and mutual impedances for ncond overhead conductors can
be determined. The equations can also be applied to underground

cables.

- In his paper, Carson assumes the earth 1s an infinite, uniform
solid, with a flat uniform upper surface and a constant resistivity.
Any “end effects” introduced at the neutral grounding points are
not large at power frequencies and therefore are neglected.
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Carson’s Equations

Carson made use of conductor images; that 1s, every conductor at
a given distance above ground has an image conductor the same
distance below ground. This is illustrated in Fig.4.
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Fig.4 Conductors and images
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Carson’s Equations

Referring to Fig.4, the original Carson's equations are given in Equations (20) and

21).

Self—impedance'
=1+ 4wP;iG + j(X; + 200G * ln + 4wQ;;G) Q/mile (20)
Mutual impedance: zjj = 4wP;;G + j(2wG * ln + 4wQ;;G) Wmile (21)
: Xi = 2wG * RD
OY\@ "GMR, (22)
i - Pj = T —kij cns( U) + kz cos(ZB ) ¥ (0.6728 + In —) (23)
771 8 32
3 Q;; = —0.0.386 + % *In kzi}_ + 3\15 k;jcos(6;;) (24)
? _ f
Fig.4 Conductors and images kij = 8.565 107 x 5y; + P (25)
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Carson’s Equations

Referring to Fig.4, the original Carson's equations are given in Equations (20) and

(21). Z;; is the self-primitive impedance of conductor
(Q/mile)

z;; is the mutual primitive impedance between
conductors i and j (Q/mile)

r;is the resistance of conductor i (QQ/mile)

w = 211fis the system angular frequency (rad/s)

G =0.1609347 x 1072 Q/mile

RD:; is the radius of conductor / (ft)

GMR; is the geometric mean radius of conductor i (ft)
JT7VITTT77777/%J777777 fisthwheree system frequency (Hz)

p is the resistivity of earth (QQ-m)

D; is the distance between conductors/ and j (ft) (see

) Fig.4)
" §;is the distance between conductor i and image j (ft)
® .
" (see Fig.4)

0, is the angle between a pair of lines drawn from
conductor / to its own image and to the image of
conductor (see Fig.4)

[OWA STATE UNIVERSITY ECpE Department

Fig.4 Conductors and images



Modified Carson’s Equations

Only two approximations are made in deriving the “modified
Carson's Equations.” These approximations involve the terms
associated with P; and Q;. The approximations use only the first
term of the variable P, and the first two terms of O,

T
Pij=3g (26)
1 2

2k
Using the approximations and assumptions the ‘j

equations” are

modified Carson's

75 = 7 + 0.09530 + j0.12134(In—— + 7.93402) Q/mile
GMR; (28)

1
7;; = 0.09530 + j0.12134(In — + 7.93402)Q/mile (29)
D;j
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Modified Carson’s Equations

Dig*Dgj
7 =14 +j0.12134*(ln$+]n;ﬁ4—$’) (18)
L

— : 1 Dqj*Di
Zjj =14 +j0.12134 « (lnD—” +In ;;R;) (19)
Z;; = 1; + 0.09530 + j0.12134(In G;RE +7.93402) Q/mile (28)

1

7j = 0.09530 + j0.12134(In = + 7.93402)Umile (29)

It will be recalled that Equations (18) andh(Jl9) could not be used because
the resistance of dirt, the GMR of dirt, and the various distances from
conductors to dirt were not known. A comparison of Equations (18) and
(19) to Equations (28) and (29) demonstrates that the modified Carson's
equations have defined the missing parameters. A comparison of the two
sets of equations shows that

ry = 0.09530 (V/mile (30)
D;gq * Dy; Dgyj * Dig
=1 — 7.93402 (31)
""GMR, ~ " GMR,

[OWA STATE UNIVERSITY ECpE Department



Modified Carson’s Equations

The “modified Carson's equations” will be used to compute the primitive
self- and mutual impedances of overhead and underground lines.

There have been some questions about the approximations made in
developing the modified Carson's equations. A paper was presented at
the IEEE 2011 Power System Conference and Exposition [3]. In that
paper, the full and modified equations were used and a comparison was
made of the “errors.” It was found that the errors were less than 1%. In
that paper, the values of the resistivity of 10 and 1000 Q-m were used
instead of the assumed 100 Q-m. A comparison was made and again the
errors were found to be less than 1%. Because of the results in the paper,
the modified equations developed earlier will not change.

[3] Kersting, W.H. and Green, R.K., Application of Carson's equations to the steady-state analysis of
distribution feeders, IEEE Power System Conference and Exposition, Phoenix, AZ, March 2011.
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Primitive Impedance Matrix for Overhead Lines

The “modified Carson's equations” will be used to compute the primitive self- and mutual
impedances of overhead and underground lines.

Z; = r; 4+ 0.09530 + j0.12134(ln$ + 7.93402) Q/mile (28)
1
7j = 0.09530 + j0.12134(In = + 7.93402)/mile (29)

tj
Equations (28) and (29) are used to compute the elements of a ncond x ncond *““primitive
impedance matrix.” An overhead four-wire grounded wye distribution line segment will
result in a 4 X 4 matrix. For an underground grounded wye line segment consisting of
three concentric neutral cables, the resulting matrix will be 6 x 6. The primitive
impedance matrix for a three-phase line consisting of m neutrals will be of the form

—— —— e

% m Zac Zan1 Zan2 Zanm

Zba Zbb  Zbc Zon1  Zbnz  Zbnm
Znla Zn1b Znic Zn1ini Znin2 Zninm (32)
Zn2a  Zn2b  Znzc Znazni  Zn2n2z  Zn2nm
| Znma  Znmb  Znmc Znmni  Znmnz  Znmnmd
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Primitive Impedance Matrix for Overhead Lines

| Zaa Zab Zac Zan1 “Zan2 “Zanm |
Zba Zbb  Zpc Zon1  Zbnz  Zbnm
[cprimitive] = | 0@ 20 Fee Tt Zoz Fam |,
Znila Zn1b Znic Znini Znin2 Zninm
Zn2a Zn2b  Zn2c Zn2nl  4n2n2  “4n2nm
Znma  Znmb  Znme Znmn1  Znmn2  Znmnm-

In partitioned form, Equation (32) becomes

[zpmwe] (3 3)

[[ff}] [m]]

721 7

IOWA STATE UNIVERSITY ECpE Department



Phase Impedance Matrix for Overhead Lines

- Fig.5 shows a four-wire grounded neutral line segment.

- For most applications, the primitive impedance matrix needs to be
reduced to a 3 x 3 “phase frame” matrix consisting of the self- and mutual
equivalent impedances for the three phases.

« One standard method of reduction 1s the “Kron” reduction. The
assumption 1s made that the hne has a multigrounded neutral as shown in

Fig.5.
g L
%‘ L 4
ag z;,; Vf:fq
@ L]
+

_:.. % +
V zbc > Zan Vft
bg

.__/\/\/\f_/www_l °

+
H f t
r:g e ch

+ ﬂ"sf’, +
Vi

<+@®

g ng

NN N RN RN RN ON RN N N N NN N Y NN N NN

Fig.5 Four-wire grounded wye line segment
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Phase Impedance Matrix for Overhead Lines

The Kron reduction method applies KVL to the circuit:
_V B _Vr -

ag ag Zaa Zab  Zac Zan ][l
Vog| _ [Vbg +|%va Zob Zbc Zpn | |Ib (34)
o | "\ | ¥ |7 70z za| |1
-Vng- _I-gg_ ZTL:I Z?E, ZTH: ZTI;I In

In partitioned form, Equation (34) becomes
[Vabc] _ [Va{bc [Zu] [EI;I]] [Iabc]
vt | = [ * i el [5] ©9

Because the neutral 1s grounded, the voltages V,, and V7, , are equal to zero.
Substituting those values into Equation (35) and expanding result in

WVabel = WVane) + [Z5]*Uane] + [Zin] *[1;,] (36)
[0] = [0] + |z [*[apc] + [Zan]*[ 1] (37)
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Phase Impedance Matrix for Overhead Lines

[0] = [0] + [Znj|*Uane] + [Zan]*[1n] (37)
Solve Equation (37) for [/ ]:
(1] = —[Zn] ™z ]* [ anc] (38)

Note in Equation (38) that once the line currents have been computed it is
possible to determine the current flowing in the neutral conductor.
Because this will be a useful concept later on, the “neutral transformation
matrix” 1s defined as

[tn] = —[Zon] | Zn] (39)
such that
[In] = [tn]:k[labc] (40)

[OWA STATE UNIVERSITY ECpE Department



Phase Impedance Matrix for Overhead Lines

[Vabc] - [Vc:bc] + [Eﬁ]*[]abc] + [Z‘ih;i]*["n] (36)
[I‘n] = _[m]_l[%]*[labc] (38)

Substitute Equation (38) into Equation (36):
[Vabc] = [V&bc] + ([Z}] - [2:?1] [Z;VI]_l [fr?j])*["abc]

Wabcl = [V(;bc] + [Zapel*[apc] (41)
where

[Zape] [le] [Zin] * Znn]_l * [f;;}] (42)

Equation (42) is the final form of the “Kron™ reduction technique. The
final phase impedance matrix becomes

Zaa “Zab “ac
[Zabcl =|Zba  Zbb  Zbc
Zea Zcb  Zcc

[OWA STATE UNIVERSITY ECpE Department
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Phase Impedance Matrix for Overhead Lines

Zaa Zab “Zac
|Zabe | =|Zpa  Zbb  Zbc| Q/mile (43)
Zea Zcb AT

« For a distribution line that is not transposed, the diagonal terms of Equation (43) will
not be equal to each other, and the off-diagonal terms will not be equal to each other.
However, the matrix will be symmetrical.

« For two-phase (V-phase) and single-phase lines in grounded wye systems, the
modified Carson's equations can be applied, which will lead to initial 3 < 3 and 2 x 2
primitive impedance matrices. Kron reduction will reduce the matrices to 2 x 2 and a
single element. These matrices can be expanded to 3 x 3 “phase frame” matrices by the
addition of rows and columns consisting of zero elements for the missing phases.

- For example, for a V-phase line consisting of phases a and ¢, the phase impedance
matrix would be

Z aa O zac

[zabc] =l 0 0 0
Zca 0 Zec

[OWA STATE UNIVERSITY ECpE Department
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Phase Impedance Matrix for Overhead Lines

The phase impedance matrix for a phase b single-phase line would be

0O 0 O
[Zabc] _[0 Zpp, 0| Q/mile (45)
0O 0 O

* The phase impedance matrix for a three-wire delta line i1s determined by the
application of Carson's equations without the Kron reduction step.

* The phase impedance matrix can be used to accurately determine the voltage
drops on the feeder line segments once the currents have been determined.
Since no approximations (transposition, for example) have been made
regarding the spacing between conductors, the effect of the mutual coupling
between phases 1s accurately taken into account. The application of the
modified Carson's equations and the phase frame matrix leads to the most
accurate model of a line segment.

[OWA STATE UNIVERSITY ECpE Department



Phase Impedance Matrix for Overhead Lines

Fig.6 shows the general three-phase model of a line segment. Keep
in mind that for V-phase and single-phase lines some of the
impedance values will be zero.

Node n —_— - Node m
® @

B +
Vﬂgn Vagm
® ®
+ -
ng n ngm

®
+ +
Veg, Vegm

Fig.6 Three-phase line segment model
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Phase Impedance Matrix for Overhead Lines

The voltage equation in matrix form for the line segment 1s

-Vag- -Vag- Zaa Zap Zac|[la
Vog | =|Vogl +|Zba Zop Zpel||Ip (46)
_ch_n _ch_m Zea Zep Zecll
where Z,; = z;; - length.
Equatlon (46) can be written in “condensed” form as
[VLGabc]n — [VLGabc]m + [ abc [[Iabc]] (47)

[OWA STATE UNIVERSITY ECpE Department



Sequence Impedances

Many times the analysis of a feeder will use only the positive and
zero sequence impedances for the line segments. There are two
methods for obtaining these impedances. The first method
incorporates the application of the modified Carson's equations and
the Kron reduction to obtain the phase impedance matrix.

The definition for line-to-ground phase voltages as a function of the
line-to-ground sequence voltages 1s given by

Vgl [1 1 1][VLG,]
Vog| = |1 aé as||VLG, (48)
V| [1 as a$||VLG,]

Where a; = 1.0£120

[OWA STATE UNIVERSITY ECpE Department



Sequence Impedances

Vo]l [1 1 1][vLg,
Vhg|=|1 a5 as||VLG, (48)
V.| [1 as a?||VLG,

In condensed form, Equation (48) becomes

[VLGgpc] = [Ag] * [VLGy4,] (49)

where 1 1 1
[AS]= 1 Clg ag (50)

1 as; aé

The phase line currents are defined in the same manner:

Uapcl = [As] * [1p12] (51)

[OWA STATE UNIVERSITY ECpE Department



Sequence Impedances

[VLGgpc]l = [As] * [VLGy1,] (49)

Equation (49) can be used to solve for the sequence line-
to-ground voltages as a function of the phase line-to-
ground voltages:

[VLGo12] = [As]™! * [VLGgpc] (52)
where
1 1 1
1 1 2
[As] 1=+ (1 “; As (53)
1 as ag

[OWA STATE UNIVERSITY ECpE Department



Sequence Impedances
VLGapeln = VLG apelm + [Zapel * [apel (47)

Uabcl = [As] * [Ip12] (51)

Equation (47) can be transformed to the sequence domain by
multiplying both sides by [4,]"! and also substituting in the
definition of the phase currents as given by Equation (51).

[VLGo12]n = [As] ™ * [VLG gpcln
= [Ag]™' * [VLGapclm + [As]™ * [Zape] * [As] * [Tp12]
= [VLGo12lm + [Zo12] * [1912] (54)

where

Zoo Zo1 Zo2
[2012] = [As]_l[zabc] [As] = Zlﬂ le le
20 221 Z22

[OWA STATE UNIVERSITY ECpE Department

(35)



Sequence Impedances

[VLGOIZ]n = [AS]_l * [VLGabc]n

[As] ™! * [VLGapnln + [As] ™ * [Zapel * [As] * [1o12]
[VLGo12lm + [Zo12] * [1p12] (54)

Equation (54) in expanded form 1s given by

VLG,| [vLG,) Zoo Zo1 Zoz|[lo
VLGy| =|VLGy| +|Z10 Z11 Ziz||h (56)
VLG,| |VLG,|  |Zy0 Zay Zapllh],

IOWA STATE UNIVERSITY ECpE Department



Sequence Impedances

Zoo Zo1 Zo2) 55
[Zo12] = [As] U Zape] [As] =|Z10 Z11 Z1z (53)
—220 221 222-

* Equation (55) i1s the defining equation for converting phase
impedances to sequence impedances.
* In Equation (55), the diagonal terms of the matrix are the “sequence
impedances” of the line such that
* Z,, 1s the zero sequence impedance
* Z,, 1s the positive sequence impedance
* Z,, 1s the negative sequence impedance
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Sequence Impedances
Zoo Zo1 Zoz
[Zo12] = [As] ™ [Zabe] [As] Em Z11 Zyo
20 Z21 22

* The off-diagonal terms of Equation (55) represent the mutual coupling
between sequences. In the i1dealized state, these off-diagonal terms
would be zero. In order for this to happen, it must be assumed that the
line has been transposed. For high-voltage transmission lines, this will
generally be the case.

* When the lines are transposed, the mutual coupling between phases (off-
diagonal terms) is equal, and, consequently, the off-diagonal terms of
the sequence impedance matrix become zero.

* Since distribution lines are rarely, if ever, transposed, the mutual
coupling between phases 1s not equal, and, as a result, the off-diagonal
terms of the sequence impedance matrix will not be zero. This is the
primary reason that distribution system analysis uses the phase domain
rather than symmetrical components.

[OWA STATE UNIVERSITY ECpE Department
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Sequence Impedances
Zaa Zab “Zac
Zabc] _lzba Zbb  Zbc
Zca Zchb  Zcc
If a line 1s assumed to be transposed, the phase impedance matrix is modified
so the three diagonal terms are equal and all of the off-diagonal terms are
equal.

QO /mile (43)

The usual procedure 1s to set the three diagonal terms of the phase impedance
matrix equal to the average of the diagonal terms of Equation (43) and the off

-diagonal terms equal to the average of the off-diagonal terms of Equation
(43).

When this 1s done the self- and mutual impedances are defined as
g = % * (Zaq + Zpp + Zec) Q/mile (57)

Zm = % ¥ (Zap + Zpe + Zoq) Q/mile (5 8)
The phase impedance matrix is now defined as

Zs Zm Zm
Q/mile (59)

[zabc] =[zm Zs  Zm
[OWA STATE UNIVERSITY ECpE Department
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Sequence Impedances

ZDD Zﬂl ZUZ (55)
[Zou] = [As]_l[zabc] [As] = ZlO le le
ZZU ZZl Zzz

When Equation (55) i1s used with this phase impedance matrix, the resulting
sequence matrix 1s diagonal (off-diagonal terms are zero). The sequence
impedances can be determined directly as

200 =Zs + 2 % Zy /il (60)
ZIN=Zpp=Zs— Zy (/nike (61)

A second method that 1s commonly used to determine the sequence impedances
directly 1s to employ the concept of geometric mean distances (GMDs). The GMD
between phases 1s defined as

D;; = GMD;; = 3/Dgp * Dpe * Deg ft (62)

The GMD between phases and neutral is defined as
Din = GMD;, = E{\/Dan * Dpp * Doy ft (63)
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Sequence Impedances

1
GMR;

z; =1;+0.09530 +0.12134(In + 7.93402) Q/mile (30)

Zj = 0.09530 +0.12134(In -~ + 7.93402) Wmile (31)
ij
The GMDs as defined earlier are used in Equations (30) and (31) to
determine the various self- and mutual impedances of the line resulting in

1

Zii =1 +0.09530 + j0.12134(In MR, + 7.93402) Q/mile (64)
Zym =1, + 0.09530 + j0.12134(In G;R + 7.93402) Q/mile (65)
1
Z;; = 0.09530 +j0.12134 (In— + 7.93402)Q/mile
i D, (66)
Zi;m = 0.09530 +j0.12134(lnD—+ 7.93402)0/mile (67)

Equations (64) through (67) will deﬁtilne a matrix of order ncond *x ncond,
where ncond 1s the number of conductors (phases plus neutrals) in the line

segment.
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Sequence Impedances

(Zave) = [Z5] = 2] » [Z0) 7" * (23] (42)
Zoo Zo1 Zo2

(Zo12] = [As] " [Zape] [As] =[Z10 Z11 Za2 (55)
Zyo Z21 Lz

Application of the Kron reduction (Equation (42)) and the sequence
impedance transformation (Equation (55)) lead to the following
expressions for the zero, positive, and negative sequence impedances:

~2
Z.
300=§E+2*i}—3*(2)ﬂ/mile (68)
Znn
D:
Z11 = 23 =13 +j0.12134(In Gﬁ;;? ) Q/mile (69)
i

Equations (68) and (69) are recognized as the standard equations for the
calculation of the line impedances when a balanced three-phase system
and transposition are assumed.
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Example 1

An overhead three-phase distribution line 1s constructed as shown in
Fig.7. Determine the phase impedance matrix and the positive and zero
sequence of the line. The phase conductors are 336,400 26/7 ACSR
(Linnet), and the neutral conductor 1s 4/0 6/1 ACSR.

<25 ft—>f 4.5 ft o
ai b ? L ? 7(
<—3.0ft—>)

4.0 ft

n R

’[ 25.0 ft
R L R E T S e E E N NS

Fig.7 Three-phase distribution line spacing
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Example 1

Solution
From the table of standard conductor data (Appendix A of Kersting Book), it 1s
found that

336,400 26/7 ACSR: GMR=0.0244 ft, Resistance=0.306
4/0 6/1 ACSR: GMR=0.00814 ft, Resistance=0.5920

An effective way of computing the distance between all conductors is to specify
each position on the pole in Cartesian coordinates using complex number notation.
The ordinate will be selected as a point on the ground directly below the left most
position. For the line in Fig.7, the positions are

d1 =0+ 29, dz = 2.5+ j29, d3 =7.0+j29, d4 =4.0 + j25
The distances between the positions can be computed as
Dy, = |dy —dy|, D3 = |dy, — d3|, D31 = |d3 — d4|
Dy =|dy —d4|, Dyg = |dy — dy|, D34 = |d3 — dy]
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Example 1

For this example, phase a 1s in position 1, phase b in position 2, phase ¢ in
position 3, and the neutral in position 4:
Dgp = 2.5 ft, Dpe = 4.5 ft, Dgg = 7.0 ft
D,, = 5.6569 ft, D, = 4.272 ft, D, = 5.0 ft

The diagonal terms of the distance matrix are the GMRs of the phase and neutral
conductors:

D,, = Dy, = D, = 0.0244, D,,,, = 0.00814

Applying the modified Carson's equation for self-impedance (Equation (28)),
the self-impedance for phase a 1s

7 = 0.0953 + 0.306 + j0.12134(In—

0.0244

+ 7.93402)=0.4013+)1.4133 ()/mile

Applying Equation (29) for the mutual impedance between phases a and b

1
Zap = 0.09530 +ji'J.12134(1n2—-5 + 7.93402) = 0.0953 + j0.8515 (V/mile

[OWA STATE UNIVERSITY ECpE Department



Example 1

Applying the equations for the other self- and mutual impedance

terms results 1n the primitive impedance matrix:

10.4013 + j1.4133  0.0953 + j0.8515 0.0953 + j0.7266 0.0953 + j0.7524]
5] = [0-0953 +/0.8515 0.4013+1.4133 0.0953+/0.7802 0.0953 +/07865| . .
“1=10.0953 +j0.7266 0.0953 + j0.7802 0.4013 +j1.4133 0.0953 + j0.7674| ™€

0.0953 +j0.7524  0.0953 + j0.7865 0.0953 +j0.7674 0.6873 + j1.5465.
The primitive impedance matrix in partitioned form is

0.4013 4+ j1.4133 0.0953 +0.8515 0.0953 + j0.7266
|Zi;] = 10.0953 +0.8515 0.4013 +1.4133 0.0943 + j0.7865| Q/mile
0.0953 +0.7266 0.0953 +j0.7802 0.4013 + j1.4133

0.0953 + j0.7524
[Z] = [0.0953 + j0.7865 | /mile
0.0953 + j0.7674

[z2.] = [0.6873 + j1.5465] Q/mile
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Example 1
[Zabc = [ U] [zm]* nn] 1 x [znj]
The “Kron” reduction of Equation (42) results in the ‘“phase impedance
matrix’’:
[Zabc] = [2—1}] - [2:;1] * [f?:;'l]_l * [2-7:;]
0.4576 +j1.0780 0.1560 + j0.5017 0.1535+ j0.3849

— 0.1560 + j0.5017 0.4666 + j1.0482 0.1580 + j0.4236 | Q/mile
0.1535 +j0.3849 0.1580 + j0.4236 0.4615 + j1.0651

[tn] = _[f;t]_l [Z;;]
The neutral transformation matrix given by Equation (39) is
[tn] = —[Znn] ' [Z)]7[-0.4292-0.1291 -0.4476-j0.1373 -0.4373-1327]
The phase impedance matrix can be transformed into the “sequence impedance

matrix” with the application of Equation (53):

[zmz] = [As]_l[zabc] [As]
0.7735+,1.9373 0.0256+;0.0115 -0.0321 +;0.0159
= |—0.0321 +j0.[}159 0.3061 + j0.6270 —0.0723 —0.0060| ()/mile

0.0256 +j0.0115 0.0723 —0.0059 0.3061 + j0.6270
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Example 1

In the sequence impedance matrix, the 1,1 term is the zero sequence
impedance, the 2,2 term is the positive sequence impedance, and the 3,3
term is the negative sequence impedance. The 2,2 and 3,3 terms are equal,
which demonstrates that for line segments, the positive and negative
sequence impedances are equal.

Note that the off-diagonal terms are not zero. This implies that there is
mutual coupling between sequences. This is a result of the nonsymmetrical
spacing between phases. With the off-diagonal terms being nonzero, the
three sequence networks representing the line will not be independent.
However, it is noted that the off-diagonal terms are small relative to the
diagonal terms.

In high-voltage transmission lines, it is usually assumed that the lines are
transposed and that the phase currents represent a balanced three-phase
set. The transposition can be simulated in Example 1 by replacing the
diagonal terms of the phase impedance matrix with the average value of the
diagonal terms (0.4619 + j1.0638) and replacing each off-diagonal term with
the average of the off-diagonal terms (0.1558 + j0.4368).
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Example 1

This modified phase impedance matrix becomes

0.4619 + j1.0638 0.1558 +;0.4368 0.1558 + j0.4368
0.1558 +j0.4368 0.4619 +j1.0638 0.1558 + j0.4368
0.1558 + j0.4368 0.1580 +;0.4268 0.4619 + j1.0638
Using this modified phase impedance matrix in the symmetrical component

transformation equation results in the modified sequence impedance matrix:

(21 4pc] = Q/mile

0.7735 + j1.9373 0 0
[21g15] = 0 0.3061 + j0.6270 0 Q/mile
0 0 0.3061 + j0.6270

Note now that the off-diagonal terms are all equal to zero, meaning that there
is no mutual coupling between sequence networks. It should also be noted that
the modified zero, positive, and negative sequence impedances are exactly
equal to the exact sequence impedances that were first computed.

The results of this example should not be interpreted to mean that a three-
phase distribution line can be assumed to have been transposed. The original
phase impedance matrix must be used if the correct effect of the mutual
coupling between phases 1s to be modeled.
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Parallel Overhead Distribution Lines

« It 1s fairly common in a distribution system to find instances
where two distribution lines are “physically” parallel. The
parallel combination may have both distribution lines
constructed on the same pole or the two lines may run in parallel
on separate poles but on the same right-of-way.

- For example, two different feeders leaving a substation may
share a common pole or right-of-way before they branch out to
their own service areas. It 1s also possible that two feeders may
converge and run in parallel until again they branch out into their
own service areas. The lines could also be underground circuits
sharing a common trench.

- In all of the cases, the question becomes, How should the
parallel lines be modeled and analyzed?
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Parallel Overhead Distribution Lines

Two parallel overhead lines on one pole are shown in Fig.8. Note
in F1g.8 the phasing of the two lines.

[<— Dy —A< Dji >

1- 1-b 1-¢
Line 1 IL i T T 7K
_Lz @an >|
Line 2 T 2-c 2-a T 2-b ? Dln
—9
n
b 2

TR TR R e T T T S S T T R T R e T
Fig.8 Parallel overhead line
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Parallel Overhead Distribution Lines

The phase impedance matrix for the parallel distribution lines is computed by
the application of Carson's equations and the Kron reduction method. The first
step 1s to number the phase positions as follows:

Position 1 2 3 4 5 6 7

Line phase 1-a 1-b 1-Cc 2-a 2-b 2-c  Neutral

With the phases numbered, the 7 x 7 primitive impedance matrix for 1 mile can
be computed using the modified Carson's equations.

It should be pointed out that if the two parallel lines are on different poles, most
likely each pole will have a grounded neutral conductor. In this case, there will
be eight positions, and position 8 will correspond to the neutral on line 2. An 8 x
8 primitive impedance matrix will be developed for this case.
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Parallel Overhead Distribution Lines

The Kron reduction will reduce the matrix to a 6 x 6 phase impedance matrix.
With reference to Fig.8, the voltage drops in the two lines are given by

vl zI11 zll, =z11_ =212 z12_, zI12 11

a NI [/ ac [2. 7] ac a

v, | | 211, =11, =zl z12,, =z12,, zZ12, || 1,
vl z1l, =11, =z11_, =212 Zz12, zI2 11

[5 ca cC oo (=4 (5

v2 z21 , z21, =z21_ z22 222, z22 12 (70)

a [2.4] ac (/4 ac a

v2, z21,, z21,, =z21,, 2z22,, z22,, z22, ||I2,
v2 z21, z21, =z21, 2z22_, 222, z22 12

(A ca cc ca cc [A

Partition Equation (70) between the third and fourth rows and columns so that
series voltage drops for 1 mile of line are given by

erewHEHET EEY o
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Series Impedance of Underground Cables

Fig.9 shows the general configuration of three underground cables (concentric
neutral or tape shielded) with an additional neutral conductor.

The modified Carson's equations can be applied to underground cables in much the
same manner as for overhead lines. The circuit of Fig.9 will result in a 7 x 7
primitive impedance matrix. For underground circuits that do not have the
additional neutral conductor, the primitive impedance matrix will be 6 x 6.

Dy,

D 13 =]
e D 12 >K D 23 Jé D 34 9
Fig.9 Three-phase underground with ad;l;lonal neutral

Two popular types of underground cables are the “concentric neutral cable” and
the “tape shield cable.” To apply the modified Carson's equations, the resistance
and GMR of the phase conductor and the equivalent neutral must be known.
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Concentric Neutral Cable

Fig.10 shows a simple detail of a concentric neutral cable. The cable consists of a
central “phase conductor” covered by a thin layer of nonmetallic semiconducting
screen to which 1s bonded the insulating material. The nsulation 1s then covered
by a semiconducting insulation screen. The solid strands of concentric neutral are
spiraled around the semiconducting screen with a uniform spacing between

strands. Some cables will also have an insulating “jacket” encircling the neutral
strands.

Phase conductor

Insulation

4— Jacket
> .

Concentric neutral strand

Insulation screen

Fig.10 Concentric neutral cable
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Concentric Neutral Cable

In order to apply Carson's equations to this cable, the following data needs
to be extracted from a table of underground cables (Appendices A and B in
Kersting Book)

*d . 1s the phase conductor diameter (in.).

*d ,1s the nominal diameter over the concentric
neutrals of the cable (in.).

*d_1s the diameter of a concentric neutral strand
(in.).

*GMR, is the geometric mean radius of the
phase conductor (ft).

*GMR_ is the geometric mean radius of a
neutral strand (ft).

*r, 1s the resistance of the phase conductor . .
(Q/mile). Fig.10 Concentric neutral cable

Phase conductor

Insulation

.....\._ ] acket
5

Concentric neutral strand

Insulation screen

r 1s the resistance of a solid neutral strand
(Q/mile).
*/ 1s the number of concentric neutral strands.
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Concentric Neutral Cable

The GMRs of the phase conductor and a neutral strand are obtained from a
standard table of conductor data (Appendix A, Kersting). The equivalent GMR
of the concentric neutral 1s computed using the equation for the GMR of
bundled conductors used in high-voltage transmission lines:

GMR,, = “[GMR, + k » RF-1 ft (72)
where R 1s the radius of a circle passing through the center of the concentric
neutral strands given b dog —d

g y R = ad24 S ft (73)

Phase conductor

Insulation
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Concentric Neutral Cable

_ %oa — ds (73)
R = 2 ft
The equivalent resistance of the concentric neutral 1s
Ts .
Ten = 5, W/mile (74)

The various spacings between a concentric neutral and the phase conductors and
other concentric neutrals are as follows:

*Concentric neutral to its own phase conductor

*D; = R (Equation (73))

*Concentric neutral to an adjacent concentric neutral

*D,; 1s the center-to-center distance of the phase conductors

*Concentric neutral to an adjacent phase conductor
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Concentric Neutral Cable
Fig.11 shows the relationship between the distance between centers
of concentric neutral cables and the radius of a circle passing
through the centers of the neutral strands.

The GMD between a concentric neutral and an adjacent phase
conductor is given by

Dy; = k\/fom —R* ft (75)

where D, . 1s the center-to-center distance between phase conductors.

l['-:: Dﬂlﬂ' >|
Fig.11 Distance between concentric neutral cables
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Concentric Neutral Cable

The distance between cables will be much greater than the radius R so a good
approximation of modeling the concentric neutral cables is shown in Fig.12. In this
figure, the concentric neutrals are modeled as one equivalent conductor (shown in black)
directly above the phase conductor.

In applying the modified Carson's equations, the numbering of conductors and neutrals is
important. For example, a three-phase underground circuit with an additional neutral
conductor must be numbered as follows:

*] representing phase a conductor #1

*2 representing phase b conductor #2

*3 representing phase ¢ conductor #3

*4 representing neutral of conductor #1

*5 representing neutral of conductor #2 1

*6 representing neutral of conductor #3 L

*7 representing additional neutral conductor (if present)

nm H

Fig.12 Distance between concentric neutral cables
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Example 3

Three concentric neutral cables are buried in a trench with spacings as shown in Fig.13. The
concentric neutral cables of Fig.13 can be modeled as shown in Fig.14. Notice the
numbering of the phase conductors and the equivalent neutrals.
The cables are 15 kV, 250,000 circular mil (CM) stranded AA with 13 strands of #14
annealed coated copper wires (one-third neutral). The outside diameter of the cable over the
neutral strands is 1.29 in. (Appendix B, Kersting). Determine the phase impedance matrix
and the sequence impedance matrix.
ﬁ ® Fig.13 Three-phase
concentric neutral cable
spacing
l
s
4

equivalent neutral cable
spacing

.@
- N
6in. 2
6
E Fig.14 Three-phase
6 in.

6in.
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Example 3

Solution

The data for the phase conductor and neutral strands from a conductor data table
(Appendix A) are as follows:
250,000 AA phase conductor:
*GMR,=0.0171 ft

*Diameter = 0.567 1n.
*Resistance = 0.4100 QQ/mile
*#14 copper neutral strands:
*GMR_ = 0.00208 ft
*Resistance = 14.87 Q/mile
*Diameter (d,) = 0.0641 1n.

The radius of the circle passing through the center of the strands (Equation (73))

1S
dod _ ds
R = = 0.0511 ft
24 f
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Example 3

The equivalent GMR of the concentric neutral is computed by

GMR., = \|GMR; * k * R*=1 = "{/0.00208 * 13 * 0.051113-1 = 0.0486 ft

The equivalent resistance of the concentric neutral is

7, 14.8722

Ten = E = T = 1.144 Q/mile

The phase conductors are numbered 1, 2, and 3. The concentric neutrals are
numbered 4, 5, and 6.

A convenient method of computing the various spacings is to define each
conductor using Cartesian coordinates. Using this approach the conductor
coordinates are

d, =0+j0, dy=05+,0, d3 =1+ 150

dy =0+ jR, ds=05+jR, dg=1+jR
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Example 3

The off-diagonal terms of the spacing matrix are computed by

Forn=1to6 and m=1toé
Dn,m = |dn - dml

The diagonal terms of the spacing matrix are the GMRs of the phase conductors
and the equivalent neutral conductors:
Fori=1to3 and j=4toé6

D;; = GMR,

DjJ j= GM R5
The resulting spacing matrix is
0.0171 0.5000 1.000 0.0511 0.5026 1.0013
0.5000 0.1710 0.5000 0.5026 0.0511 0.5026
1.000 0.5000 0.0171 1.0013 0.5026 0.0511
[D]: 0.0511 05026 1.0013 0.0486 0.5000 1.000
0.5026 0.0511 0.5026 0.5000 0.0486 0.5000
1 1.0013  0.5026 0.0511 1.000 0.5000 0.0486
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Example 3

The self-impedance for the cable in position 1 1s

771 = 0.0953 + 0.41 + j0.12134(In—— + 7.93402)=0.5053+j1.4564 Q/mile

The self-impedance for the concentric neutral for cable #1 1s

Z4q = 0.0953 + 1.144 + j0.12134(In [}{]1486 + 7.93402)=1.2391+j1.3296 (V/mile

The mutual impedance between cable #1 and cable #2 is

715 = 0.0953 + j0.12134(In —— + 7.93402)=0.0953+]1.0468 Q/mile

The mutual impedance between cable #1 and its concentric neutral 1s

773 = 0.0953 + j0.12134(In —— + 7.93402)=0.0953+j1 3236 W/mile

The mutual impedance between the concentric neutral of cable #1 and the
concentric neutral of cable #2 1s

Zzs = 0.0953 + j0.12134(In — + 7.93402)=0.0953+j1.0468 /mile
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Example 3

Continuing the application of the modified Carson's equations results ina 6 x 6
primitive impedance matrix. This matrix in partitioned form is

(0.5053 + j1.4564
0.0953 + j1.0468
0.0953 + j0.9627

7] =

0.0953 + j1.3236
0.0953 +j1.0468
0.0953 +j0.9626

1.2393 + j1.3296
0.0953 + j1.0468
0.0953 + j0.9627

[Zan] =

0.0953 + j1.0468
0.5053 + j1.4564
0.0953 + j1.0468

0.0953 + j1.0468
0.0953 + j1.3236
0.0953 + j1.0462

[Zn)] = [z5]

0.0953 + j1.0468
1.2393 + j1.3296
0.0953 + j1.0468

0.0953 + j0.9627]

0.0953 + j1.0468
0.5053 + j1.4564

0.0953 + j0.9627]

0.0953 + j1.0462

0.0953 + j1.3236 |

0.0953 + j0.9627

Q/mide

Q/mile

0.0953 + j1.0468 | (/mile

1.2393 + j1.3296

Using the Kron reduction results in the phase impedance matrix:

[zabc] = [2‘;;] - [E?n] * [ZTL;I]_I * [f:l:;]
0.7981 + j0.4467 0.3188 + j0.0334 0.2848 — j0.0138

— [0.3188 +j0.0334 0.7890 + j0.4048 0.3188 + j0.0334 | /mile
0.2848 — j0.0138 0.3188 + j0.0334 0.7981 + j0.4467
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Example 3

ZUO ZUl ZOZ

[Zo1z]= [As]_l[zabc] [As] _[210 le 212
ZZU 221 Zzz

(35)

The sequence impedance matrix for the concentric neutral three-
phase line 1s determined using Equation (55):

[Z_{]lz] = [As]_l[zabc] [As] i
1.4140 + j0.4681 —0.0026 — j0.0081 —0.0057 + j0.0063
=|—0.0057 +j0.0063 0.4876 + j0.4151 —0.0265 + j0.0450| Q2/mile

—0.0026 —;0.0081 0.0523 +;0.0004  0.4876 + j0.4151 |
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ape-Shielded Cables

Fig.15 shows a simple detail of a tape-shielded cable. The cable consists of a
central “phase conductor” covered by a thin layer of nonmetallic semiconducting
screen to which is bonded the insulating material. The insulation is covered by a
semiconducting insulation screen. The shield 1s bare copper tape helically
applied around the insulation screen. An insulating “jacket” encircles the tape

shield.
N / Al or Cu phase
/ / conductor
/]\ Insulation
dod ds d.-:

Cu tape shield

\
V \\ Jacket

Fig.15 Tape-shielded cable
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ape-Shielded Cables

Parameters of the tape-shielded cable are

*d. 1s the diameter of phase conductor (in.)

*d, 1s the outside diameter of the tape shield (in.)

*d , 1s the outside diameter over jacket (in.)

*T is the thickness of copper tape shield (mil)

Once again the modified Carson's equations will be applied to calculate the self-
impedances of the phase conductor and the tape shield as well as the mutual impedance
between the phase conductor and the tape shield. The resistance and GMR of the phase
conductor are found in a standard table of conductor data (Appendix A, Kersting).

N / Al or Cu phase

/ / conductor

Insulation

s d
_\!/ Cu tape shield

V \ Jacket

Fig.15 Tape-shielded cable
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ape-Shielded Cables

* Once again the modified Carson's equations will be applied to calculate the
self-impedances of the phase conductor and the tape shield as well as the
mutual impedance between the phase conductor and the tape shield.

* The resistance and GMR of the phase conductor are found in a standard table
of conductor data (Appendix A, Kersting).

* The resistance of the tape shield is given by

Tonieta = 7.9385 + 10° "1 = /mile (76)
S5

N / Al or Cu phase

/ / conductor

Insulation

s de
AI/ Cu tape shield
¥ \ Jacket

Fig.15 Tape-shielded cable
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ape-Shielded Cables

Tshield = 7-9385 * 108

i 76
d.+T Q/mile ( )

The resistance of the tape shield given in Equation (76) assumes a resistivity of
100 Q-m and a temperature of 50°C. The outside diameter of the tape shield d, 1s
given 1n inches and the thickness of the tape shield 7" 1n mil.

The GMR of the tape shield is the radius of a circle passing through the middle

of the shield and 1s given by (d./2) — (T /2000)
S

GMRgpiela = T ft (77)

/ Al or Cu phase

/ / conductor
1\ Insulation
dﬂd 'd'ls dc
Cu tape shield
\ Jacket
\

Fig.15 Tape-shielded cable
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ape-Shielded Cables

The various spacings between a tape shield and the conductors and
other tape shields are as follows:
Tape shield to its own phase conductor

Di; = GMRgpje1q = Radius to midpoint of the shield (ft) (79)

Tape shield to an adjacent tape shield
Dj=6G te@o ditme ¢ thephee odtos (£) (80)
Tape shield to an adjacent phase or neutral conductor
D =Dy (£) (81)

where D,  1s the center-to-center distance between phase
conductors.
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Example 4

A single-phase circuit consists of a 1/0 AA, 220 mil insulation tape-shielded
cable and a 1/0 CU neutral conductor as shown in Fig.16. The single-phase line
1s connected to phase b. Determine the phase impedance matrix.

Cable data: 1/0 AA < 3in. ——>

Outside diameter of the tape shield =d, =

0.88 1n.

Resistance = 0.97 Q/mile

GMR,=0.0111 ft

Tape shield thickness =7'= 5 mil

Neutral data: 1/0 copper, 7 strand .
Resistance = 0.607 Q/mile

GMR,=0.01113 ft

Distance between cable and neutral =D,

=3 1n. Fig.16 Single-phase tape shield with neutral
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Example 4

The resistance of the tape shield is computed according to Equation (76):

B 18.826 B 18.826
TShiEEd - d_g * T — 0.88 * 5

= 4.2786 (/mile

The GMR of the tape shield 1s computed according to Equation (77):

(d./2) — (T/2000) (0.88/2) — (5/2000)
GMRshieta = 12 N 12

The conductors are numbered such that

#1 represents 1/0 AA conductor

*#2 represents tape shield

#3 represents 1/0 copper ground

The spacings used in the modified Carson's equations are

= 0.0365 ft

D=0 499 =0.0365

__shad
3
ILB:E:O'ZS
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Example 4

The self-impedance of conductor #1 is

1

711 = 0.0953 + 0.97 + j0.12134(In——

+ 7.93402)=1.0653+71.5088 ()/mile

The mutual impedance between conductor #1 and the tape shield (conductor #2) 1s

1
0.0365

Z12 = 0.0953 + j0.12134(In + 7.93402)=0.0953+)1.3645 (M/mile

The self-impedance of the tape shield (conductor #2) is

1

7z, = 0.0953 + 4.2786 + j0.12134(In——

+ 7.93402)=4.3739+)1.3645 Q/mile

The final primitive impedance matrix is

1.0653 + j1.5088 0.0953 + j1.3645 0.0953 + j1.1309
(2] = |0.0953 + j1.3645 4.3739 + j1.3645 0.0953 + j1.1309 | Q/mile
0.0953 +j1.1309 0.0953 +j1.1309 0.7023 + j1.5085
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Example 4

In partitioned form, the primitive impedance matrix is
[p ] = 1.0653 + j1.5088 /mile

(7] = [0.0953 + j1.3645 0.0953 + j1.1309] Q/mile
. [0.0953+ 136457 . .

(i) = [0.0953 +j1.1309] {/mile
= [4.3739 +j1.3645 0.0953 + j1.1309

Znjl = 0.0953 + j1.1309 0.7023 + ;'1.5085‘“”““1""’
Applying Kron reduction method will result in a single impedance, which

represents the equivalent single-phase impedance of the tape shield cable and
the neutral conductor:

[le] = [le] [Z17] Znn]_l[znj]
Z1, = 1.3219 + j0.6743 Q/mile
Since the single-phase line is on phase b, then the phase impedance matrix for

the line 1s
0 0 0
[Zape]l = |0 1.3219 4 j0.6743 0| /mile
0 0 0
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Parallel Underground Distribution Lines

Fig.17 shows two concentric neutral parallel lines each with a separate grounded neutral
conductor.

The process for computing the 6 x 6 phase impedance matrix follows exactly the same
procedure as for the overhead lines. In this case, there are a total of 14 conductors (6
phase conductors, 6 equivalent concentric neutral conductors, and 2 grounded neutral
conductors). Applying Carson's equations will result in a 14 x 14 primitive impedance
matrix. This matrix is partitioned between the sixth and seventh rows and columns. The
Kron reduction is applied to form the final 6 x 6 phase impedance matrix.

Dy —
Dyy
Dy e Dy 4 Dy 3 =
8 9
1 1 2 4 3

JIJr.ln.ll

Fig.17 Parallel concentric neutral underground lines
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Thank You!
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