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Series Impedance of Overhead and 
Underground Lines

• The determination of the series impedance for overhead and 
underground lines is a critical step before the analysis of a distribution 
feeder can begin. 

• The series impedance of a single-phase, two-phase (V-phase), or 
three-phase distribution line consists of the resistance of the 
conductors and the self- and mutual inductive reactances resulting 
from the magnetic fields surrounding the conductors.

• The resistance component for the conductors will typically come 
from a table of conductor data such as that found in Appendix A of 
Kersting Book. 
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Overview – What’s phase impedance
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Partition Form

Conductor 
Types 
(materials) & 
Construction 
Info (spacings)

Resistance (r)
Geometric Mean 
Radius (GMR)
Distances (Dij)

Modified Carston’s 
Equation

Kron 
reduction



Overview – Why Carston’s equation
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Overview – Primitive impedances v.s. 
Phase impedances

ECpE Department

Primitive self- and mutual- 
impedances calculated using 
Carston’s equation

Neutral is modeled as an 
individual conductor. Hence, 
Zprimitive is 4x4 in this case.

Using Kron reduction, 
neutral conductor’s impact 
can be rounded into the 
phase conductor. Hence, Zabc 
is 3x3.



Series Impedance of Overhead Lines
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The inductive reactance (self and mutual) component of the impedance is 
a function of the total magnetic fields surrounding a conductor. Fig.1 
shows conductors 1 through n with the magnetic flux lines created by 
currents flowing in each of the conductors.

Fig.1 Magnetic field 



Series Impedance of Overhead Lines
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The currents in all conductors are assumed to be flowing out of the page. It 
is further assumed that the sum of the currents will add to zero. 

The total flux linking conductor i is given by

Fig.1 Magnetic field 

where
•N = Number of times the line of flux surrounds 
the conductor. For this case N = 1
•Din is the distance between conductor i and 
conductor n (ft)
•GMRi is the geometric mean radius of 
conductor i (ft)

(1)

(2)



Series Impedance of Overhead Lines

The inductance of conductor i consists of the “self-inductance” of 
conductor i and the “mutual inductance” between conductor i and 
all of the other n − 1 conductors. By definition,
Self-inductance:
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Mutual inductance:

(3)

(4)



Transposed Three-phase Lines
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• High-voltage transmission lines are usually assumed to be transposed 
(each phase occupies the same physical position on the structure for one
-third of the length of the line). In addition to the assumption of 
transposition, it is assumed that the phases are equally loaded (balanced 
loading). 

• With these two assumptions, it is possible to combine the “self” and 
“mutual” terms into one “phase” inductance.

• Phase inductance:

where

Dab, Dbc, and Dca are the distances between phases.

(5)

(6)



Transposed Three-phase Lines
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Assuming a frequency of 60 Hz, the phase inductive reactance is 
given by
Phase reactance:

The series impedance per phase of a transposed three-phase line 
consisting of one conductor per phase is given by
Series impedance:

(7)

(8)



Untransposed Distribution Lines
• Because distribution systems consist of single-phase, two-phase, and untransposed three-

phase lines serving unbalanced loads, it is necessary to retain the identity of the self- and 
mutual impedance terms of the conductors. 

• The resistance of the conductors is taken directly from a table of conductor data. 
Equations (3) and (4) are used to compute the self- and mutual inductive reactances of 
the conductors. 

• The inductive reactance will be assumed to be at a frequency of 60 Hz, and the length of 
the conductor will be assumed to be 1 mile. With those assumptions, the self- and mutual 
impedances are given by
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(3)
(4)

However, this is not enough, as we also have to take into account the ground return 
path for the unbalanced currents.

(9)

(10)



Untransposed Distribution Lines
• In 1926, John Carson published a paper where he developed a set of equations for 

computing the self- and mutual impedances of lines taking into account the return 
path of current through ground [1]. 

• Carson's approach was to represent a line with the conductors connected to a source 
at one end and grounded at the remote end. 

• Fig.2 illustrates a line consisting of two conductors (i and j) carrying currents (Ii and 
Ij) with the remote ends of the conductors tied to ground. A fictitious “dirt” 
conductor carrying current Id is used to represent the return path for the currents.
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Fig.2 Two conductors with dirt return path
[1] Carson, J.R., Wave propagation in overhead wires with ground return, Bell System Technical Journal, 5, 539, 1926.



Untransposed Distribution Lines
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In Fig.2, Kirchhoff's voltage law (KVL) is used to write the equation for the voltage 
between conductor i and ground:

Collect terms in Equation (11):

Fig.2 Two conductors with dirt return path

(11)

(12)



Untransposed Distribution Lines
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From Kirchhoff's current law

Substitute Equation (13) into Equation (12) and collect terms:

Equation (14) is of the general form

where

(12)

(13)

(14)

(15)

(16)

(17)



Untransposed Distribution Lines
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In Equations (16) and (17), the “hat” impedances are given by Equations (9) and (10). 
Note that in these two equations the effect of the ground return path is being “folded” 
into what will now be referred to as the “primitive” self- and mutual impedances of the 
line. The “equivalent primitive circuit” is shown in Fig.3.

Fig.3 Equivalent primitive circuit

(16)

(17)

(9)

(10)



Untransposed Distribution Lines
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Substituting Equations (9) and (10) of the “hat” impedances into Equations (16) and (17), 
the primitive self-impedance is given by

In a similar manner, the primitive mutual impedance can be expanded:

(16)

(17)

(9)

(10)

(18)

(19)



Untransposed Distribution Lines
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The obvious problem in using Equations (18) and (19) is 
the fact that we do not know the values of the resistance 
of dirt (rd), the geometric mean radius of dirt (GMRd), 
and the distances from the conductors to dirt (Dnd, Ddn, 
Dmd, Ddm). This is where John Carson's work bails us out.

(18)

(19)



Carson’s Equations

• Since a distribution feeder is inherently unbalanced, the most 
accurate analysis should not make any assumptions regarding the 
spacing between conductors, conductor sizes, and transposition. 

• In Carson's 1926 paper, he developed a technique whereby the 
self- and mutual impedances for ncond overhead conductors can 
be determined. The equations can also be applied to underground 
cables. 

• In his paper, Carson assumes the earth is an infinite, uniform 
solid, with a flat uniform upper surface and a constant resistivity. 
Any “end effects” introduced at the neutral grounding points are 
not large at power frequencies and therefore are neglected.
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Carson’s Equations
Carson made use of conductor images; that is, every conductor at 
a given distance above ground has an image conductor the same 
distance below ground. This is illustrated in Fig.4.
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Fig.4 Conductors and images



Carson’s Equations
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Referring to Fig.4, the original Carson's equations are given in Equations (20) and 
(21).

Self-impedance:

Mutual impedance:

Fig.4 Conductors and images

(20)

(21)

(22)

(23)

(24)

(25)



Carson’s Equations
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Referring to Fig.4, the original Carson's equations are given in Equations (20) and 
(21).

Fig.4 Conductors and images



Modified Carson’s Equations

23

ECpE Department

Only two approximations are made in deriving the “modified 
Carson's Equations.” These approximations involve the terms 
associated with Pij and Qij. The approximations use only the first 
term of the variable Pij and the first two terms of Qij:

Using the approximations and assumptions the “modified Carson's 
equations” are

(26)

(27)

(28)

(29)



Modified Carson’s Equations
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It will be recalled that Equations (18) and (19) could not be used because 
the resistance of dirt, the GMR of dirt, and the various distances from 
conductors to dirt were not known. A comparison of Equations (18) and 
(19) to Equations (28) and (29) demonstrates that the modified Carson's 
equations have defined the missing parameters. A comparison of the two 
sets of equations shows that

(28)

(29)

(18)

(19)

(30)

(31)



Modified Carson’s Equations
The “modified Carson's equations” will be used to compute the primitive 
self- and mutual impedances of overhead and underground lines.

There have been some questions about the approximations made in 
developing the modified Carson's equations. A paper was presented at 
the IEEE 2011 Power System Conference and Exposition [3]. In that 
paper, the full and modified equations were used and a comparison was 
made of the “errors.” It was found that the errors were less than 1%. In 
that paper, the values of the resistivity of 10 and 1000 Ω-m were used 
instead of the assumed 100 Ω-m. A comparison was made and again the 
errors were found to be less than 1%. Because of the results in the paper, 
the modified equations developed earlier will not change.

[3] Kersting, W.H. and Green, R.K., Application of Carson's equations to the steady-state analysis of 
distribution feeders, IEEE Power System Conference and Exposition, Phoenix, AZ, March 2011. 25
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Primitive Impedance Matrix for Overhead Lines
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The “modified Carson's equations” will be used to compute the primitive self- and mutual 
impedances of overhead and underground lines.

Equations (28) and (29) are used to compute the elements of a ncond × ncond “primitive 
impedance matrix.” An overhead four-wire grounded wye distribution line segment will 
result in a 4 × 4 matrix. For an underground grounded wye line segment consisting of 
three concentric neutral cables, the resulting matrix will be 6 × 6. The primitive 
impedance matrix for a three-phase line consisting of m neutrals will be of the form

(28)

(29)

(32)



Primitive Impedance Matrix for Overhead Lines
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(32)

In partitioned form, Equation (32) becomes

(33)



Phase Impedance Matrix for Overhead Lines
• Fig.5 shows a four-wire grounded neutral line segment.
• For most applications, the primitive impedance matrix needs to be 

reduced to a 3 × 3 “phase frame” matrix consisting of the self- and mutual 
equivalent impedances for the three phases. 

• One standard method of reduction is the “Kron” reduction. The 
assumption is made that the line has a multigrounded neutral as shown in 
Fig.5. 
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Fig.5 Four-wire grounded wye line segment



Phase Impedance Matrix for Overhead Lines
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The Kron reduction method applies KVL to the circuit:

In partitioned form, Equation (34) becomes

Because the neutral is grounded, the voltages Vng and V′ng are equal to zero. 
Substituting those values into Equation (35) and expanding result in

(34)

(35)

(36)

(37)



Phase Impedance Matrix for Overhead Lines
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Solve Equation (37) for [In]:

Note in Equation (38) that once the line currents have been computed it is 
possible to determine the current flowing in the neutral conductor. 
Because this will be a useful concept later on, the “neutral transformation 
matrix” is defined as

such that

(37)

(38)

(39)

(40)



Phase Impedance Matrix for Overhead Lines
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Substitute Equation (38) into Equation (36):

where

Equation (42) is the final form of the “Kron” reduction technique. The 
final phase impedance matrix becomes

(36)

(38)

(41)

(42)

(43)



Phase Impedance Matrix for Overhead Lines

• For a distribution line that is not transposed, the diagonal terms of Equation (43) will 
not be equal to each other, and the off-diagonal terms will not be equal to each other. 
However, the matrix will be symmetrical.

• For two-phase (V-phase) and single-phase lines in grounded wye systems, the 
modified Carson's equations can be applied, which will lead to initial 3 × 3 and 2 × 2 
primitive impedance matrices. Kron reduction will reduce the matrices to 2 × 2 and a 
single element. These matrices can be expanded to 3 × 3 “phase frame” matrices by the 
addition of rows and columns consisting of zero elements for the missing phases. 

• For example, for a V-phase line consisting of phases a and c, the phase impedance 
matrix would be

32

ECpE Department

(43)

(44)



Phase Impedance Matrix for Overhead Lines
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The phase impedance matrix for a phase b single-phase line would be

• The phase impedance matrix for a three-wire delta line is determined by the 
application of Carson's equations without the Kron reduction step.

• The phase impedance matrix can be used to accurately determine the voltage 
drops on the feeder line segments once the currents have been determined. 
Since no approximations (transposition, for example) have been made 
regarding the spacing between conductors, the effect of the mutual coupling 
between phases is accurately taken into account. The application of the 
modified Carson's equations and the phase frame matrix leads to the most 
accurate model of a line segment. 

(45)



Phase Impedance Matrix for Overhead Lines

Fig.6 shows the general three-phase model of a line segment. Keep 
in mind that for V-phase and single-phase lines some of the 
impedance values will be zero.
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Fig.6 Three-phase line segment model



Phase Impedance Matrix for Overhead Lines
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The voltage equation in matrix form for the line segment is

where Zij = zij · length.
Equation (46) can be written in “condensed” form as

(46)

(47)



Sequence Impedances

Many times the analysis of a feeder will use only the positive and 
zero sequence impedances for the line segments. There are two 
methods for obtaining these impedances. The first method 
incorporates the application of the modified Carson's equations and 
the Kron reduction to obtain the phase impedance matrix.
The definition for line-to-ground phase voltages as a function of the 
line-to-ground sequence voltages is given by
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(48)



Sequence Impedances
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In condensed form, Equation (48) becomes

where

The phase line currents are defined in the same manner:

(48)

(49)

(50)

(51)



Sequence Impedances

Equation (49) can be used to solve for the sequence line-
to-ground voltages as a function of the phase line-to-
ground voltages:
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where

(49)

(52)

(53)



Sequence Impedances

39

ECpE Department

Equation (47) can be transformed to the sequence domain by 
multiplying both sides by [As]−1 and also substituting in the 
definition of the phase currents as given by Equation (51).

where

(51)

(47)

(54)

(55)



Sequence Impedances

40

ECpE Department

Equation (54) in expanded form is given by

(54)

(56)



Sequence Impedances
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• Equation (55) is the defining equation for converting phase 
impedances to sequence impedances. 

• In Equation (55), the diagonal terms of the matrix are the “sequence 
impedances” of the line such that
•  Z00 is the zero sequence impedance
•  Z11 is the positive sequence impedance
•  Z22 is the negative sequence impedance

(55)
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Sequence Impedances

• The off-diagonal terms of Equation (55) represent the mutual coupling 
between sequences. In the idealized state, these off-diagonal terms 
would be zero. In order for this to happen, it must be assumed that the 
line has been transposed. For high-voltage transmission lines, this will 
generally be the case. 

• When the lines are transposed, the mutual coupling between phases (off-
diagonal terms) is equal, and, consequently, the off-diagonal terms of 
the sequence impedance matrix become zero. 

• Since distribution lines are rarely, if ever, transposed, the mutual 
coupling between phases is not equal, and, as a result, the off-diagonal 
terms of the sequence impedance matrix will not be zero. This is the 
primary reason that distribution system analysis uses the phase domain 
rather than symmetrical components.

(55)



Sequence Impedances

If a line is assumed to be transposed, the phase impedance matrix is modified 
so the three diagonal terms are equal and all of the off-diagonal terms are 
equal. 
The usual procedure is to set the three diagonal terms of the phase impedance 
matrix equal to the average of the diagonal terms of Equation (43) and the off
-diagonal terms equal to the average of the off-diagonal terms of Equation 
(43). 
When this is done the self- and mutual impedances are defined as
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The phase impedance matrix is now defined as

(43)

(57)
(58)

(59)



Sequence Impedances
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When Equation (55) is used with this phase impedance matrix, the resulting 
sequence matrix is diagonal (off-diagonal terms are zero). The sequence 
impedances can be determined directly as

A second method that is commonly used to determine the sequence impedances 
directly is to employ the concept of geometric mean distances (GMDs). The GMD 
between phases is defined as

The GMD between phases and neutral is defined as

ᵆ� 00 = ᵆ� ᵆ� + 2 ∗ ᵆ� ᵅ� �ᵯ� /ᵅ�ᵅ�ᵅ�ᵅ�

ᵆ� 11 = ᵆ� 22 = ᵆ� ᵆ� − ᵆ� ᵅ� ��ᵯ� /ᵅ�ᵅ�ᵅ�ᵅ�

(60)
(61)

(55)

(62)

(63)



Sequence Impedances
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The GMDs as defined earlier are used in Equations (30) and (31) to 
determine the various self- and mutual impedances of the line resulting in

Equations (64) through (67) will define a matrix of order ncond × ncond, 
where ncond is the number of conductors (phases plus neutrals) in the line 
segment.

(30)
(31)

(64)
(65)
(66)
(67)



Sequence Impedances
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Application of the Kron reduction (Equation (42)) and the sequence 
impedance transformation (Equation (55)) lead to the following 
expressions for the zero, positive, and negative sequence impedances:

Equations (68) and (69) are recognized as the standard equations for the 
calculation of the line impedances when a balanced three-phase system 
and transposition are assumed.

(42)

(55)

(68)

(69)



Example 1
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An overhead three-phase distribution line is constructed as shown in 
Fig.7. Determine the phase impedance matrix and the positive and zero 
sequence of the line. The phase conductors are 336,400 26/7 ACSR 
(Linnet), and the neutral conductor is 4/0 6/1 ACSR.

Fig.7 Three-phase distribution line spacing



Example 1

48

ECpE Department

Solution
From the table of standard conductor data (Appendix A of Kersting Book), it is 
found that

336,400 26/7 ACSR: GMR=0.0244 ft, Resistance=0.306 
4/0 6/1 ACSR: GMR=0.00814 ft, Resistance=0.5920 

An effective way of computing the distance between all conductors is to specify 
each position on the pole in Cartesian coordinates using complex number notation. 
The ordinate will be selected as a point on the ground directly below the left most 
position. For the line in Fig.7, the positions are

The distances between the positions can be computed as

ᵅ� 1 = 0 + ᵅ� 29,�ᵅ� 2 = 2.5 + ᵅ� 29,�ᵅ� 3 = 7.0 + ᵅ� 29,�ᵅ� 4 = 4.0 + ᵅ� 25
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Example 1
For this example, phase a is in position 1, phase b in position 2, phase c in 
position 3, and the neutral in position 4:

The diagonal terms of the distance matrix are the GMRs of the phase and neutral 
conductors:

Applying the modified Carson's equation for self-impedance (Equation (28)), 
the self-impedance for phase a is

Applying Equation (29) for the mutual impedance between phases a and b



Example 1
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Applying the equations for the other self- and mutual impedance 
terms results in the primitive impedance matrix:

The primitive impedance matrix in partitioned form is



Example 1
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The “Kron” reduction of Equation (42) results in the “phase impedance 
matrix”:

The neutral transformation matrix given by Equation (39) is

The phase impedance matrix can be transformed into the “sequence impedance 
matrix” with the application of Equation (53):



Example 1
• In the sequence impedance matrix, the 1,1 term is the zero sequence 

impedance, the 2,2 term is the positive sequence impedance, and the 3,3 
term is the negative sequence impedance. The 2,2 and 3,3 terms are equal, 
which demonstrates that for line segments, the positive and negative 
sequence impedances are equal. 

• Note that the off-diagonal terms are not zero. This implies that there is 
mutual coupling between sequences. This is a result of the nonsymmetrical 
spacing between phases. With the off-diagonal terms being nonzero, the 
three sequence networks representing the line will not be independent. 
However, it is noted that the off-diagonal terms are small relative to the 
diagonal terms.

• In high-voltage transmission lines, it is usually assumed that the lines are 
transposed and that the phase currents represent a balanced three-phase 
set. The transposition can be simulated in Example 1 by replacing the 
diagonal terms of the phase impedance matrix with the average value of the 
diagonal terms (0.4619 + j1.0638) and replacing each off-diagonal term with 
the average of the off-diagonal terms (0.1558 + j0.4368).
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Example 1
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This modified phase impedance matrix becomes

Note now that the off-diagonal terms are all equal to zero, meaning that there 
is no mutual coupling between sequence networks. It should also be noted that 
the modified zero, positive, and negative sequence impedances are exactly 
equal to the exact sequence impedances that were first computed.
The results of this example should not be interpreted to mean that a three-
phase distribution line can be assumed to have been transposed. The original 
phase impedance matrix must be used if the correct effect of the mutual 
coupling between phases is to be modeled.

Using this modified phase impedance matrix in the symmetrical component 
transformation equation results in the modified sequence impedance matrix:



Parallel Overhead Distribution Lines

• It is fairly common in a distribution system to find instances 
where two distribution lines are “physically” parallel. The 
parallel combination may have both distribution lines 
constructed on the same pole or the two lines may run in parallel 
on separate poles but on the same right-of-way. 

• For example, two different feeders leaving a substation may 
share a common pole or right-of-way before they branch out to 
their own service areas. It is also possible that two feeders may 
converge and run in parallel until again they branch out into their 
own service areas. The lines could also be underground circuits 
sharing a common trench. 

• In all of the cases, the question becomes, How should the 
parallel lines be modeled and analyzed? 54
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Parallel Overhead Distribution Lines
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Two parallel overhead lines on one pole are shown in Fig.8. Note 
in Fig.8 the phasing of the two lines.

Fig.8 Parallel overhead line



Parallel Overhead Distribution Lines
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The phase impedance matrix for the parallel distribution lines is computed by 
the application of Carson's equations and the Kron reduction method. The first 
step is to number the phase positions as follows:

Position 1 2 3 4 5 6 7

Line phase 1-a 1-b 1-c 2-a 2-b 2-c Neutral

With the phases numbered, the 7 × 7 primitive impedance matrix for 1 mile can 
be computed using the modified Carson's equations. 
It should be pointed out that if the two parallel lines are on different poles, most 
likely each pole will have a grounded neutral conductor. In this case, there will 
be eight positions, and position 8 will correspond to the neutral on line 2. An 8 × 
8 primitive impedance matrix will be developed for this case. 



Parallel Overhead Distribution Lines
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The Kron reduction will reduce the matrix to a 6 × 6 phase impedance matrix. 
With reference to Fig.8, the voltage drops in the two lines are given by

(70)

Partition Equation (70) between the third and fourth rows and columns so that 
series voltage drops for 1 mile of line are given by

(71)



Series Impedance of Underground Cables
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Fig.9 shows the general configuration of three underground cables (concentric 
neutral or tape shielded) with an additional neutral conductor.
The modified Carson's equations can be applied to underground cables in much the 
same manner as for overhead lines. The circuit of Fig.9 will result in a 7 × 7 
primitive impedance matrix. For underground circuits that do not have the 
additional neutral conductor, the primitive impedance matrix will be 6 × 6.

Fig.9 Three-phase underground with additional neutral

Two popular types of underground cables are the “concentric neutral cable” and 
the “tape shield cable.” To apply the modified Carson's equations, the resistance 
and GMR of the phase conductor and the equivalent neutral must be known.



Concentric Neutral Cable
Fig.10 shows a simple detail of a concentric neutral cable. The cable consists of a 
central “phase conductor” covered by a thin layer of nonmetallic semiconducting 
screen to which is bonded the insulating material. The insulation is then covered 
by a semiconducting insulation screen. The solid strands of concentric neutral are 
spiraled around the semiconducting screen with a uniform spacing between 
strands. Some cables will also have an insulating “jacket” encircling the neutral 
strands.
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Fig.10 Concentric neutral cable



Concentric Neutral Cable
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In order to apply Carson's equations to this cable, the following data needs 
to be extracted from a table of underground cables (Appendices A and B in 
Kersting Book)

•dc is the phase conductor diameter (in.).
•dod is the nominal diameter over the concentric 
neutrals of the cable (in.).
•ds is the diameter of a concentric neutral strand 
(in.).
•GMRc is the geometric mean radius of the 
phase conductor (ft).
•GMRs is the geometric mean radius of a 
neutral strand (ft).
•rc is the resistance of the phase conductor 
(Ω/mile).
•rs is the resistance of a solid neutral strand 
(Ω/mile).
•k is the number of concentric neutral strands.

Fig.10 Concentric neutral cable



Concentric Neutral Cable
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The GMRs of the phase conductor and a neutral strand are obtained from a 
standard table of conductor data (Appendix A, Kersting). The equivalent GMR 
of the concentric neutral is computed using the equation for the GMR of 
bundled conductors used in high-voltage transmission lines:

where R is the radius of a circle passing through the center of the concentric 
neutral strands given by

Fig.10 Concentric neutral cable

(72)

(73)



Concentric Neutral Cable
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The equivalent resistance of the concentric neutral is

The various spacings between a concentric neutral and the phase conductors and 
other concentric neutrals are as follows:
•Concentric neutral to its own phase conductor
•Dij = R (Equation (73))
•Concentric neutral to an adjacent concentric neutral
•Dij is the center-to-center distance of the phase conductors
•Concentric neutral to an adjacent phase conductor

(74)

(73)



Concentric Neutral Cable
Fig.11 shows the relationship between the distance between centers 
of concentric neutral cables and the radius of a circle passing 
through the centers of the neutral strands.
The GMD between a concentric neutral and an adjacent phase 
conductor is given by
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where Dnm is the center-to-center distance between phase conductors.

Fig.11 Distance between concentric neutral cables

(75)



Concentric Neutral Cable
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The distance between cables will be much greater than the radius R so a good 
approximation of modeling the concentric neutral cables is shown in Fig.12. In this 
figure, the concentric neutrals are modeled as one equivalent conductor (shown in black) 
directly above the phase conductor.

In applying the modified Carson's equations, the numbering of conductors and neutrals is 
important. For example, a three-phase underground circuit with an additional neutral 
conductor must be numbered as follows:

•1 representing phase a conductor #1
•2 representing phase b conductor #2
•3 representing phase c conductor #3
•4 representing neutral of conductor #1
•5 representing neutral of conductor #2
•6 representing neutral of conductor #3
•7 representing additional neutral conductor (if present)

Fig.12 Distance between concentric neutral cables



Example 3
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Three concentric neutral cables are buried in a trench with spacings as shown in Fig.13. The 
concentric neutral cables of Fig.13 can be modeled as shown in Fig.14. Notice the 
numbering of the phase conductors and the equivalent neutrals.
The cables are 15 kV, 250,000 circular mil (CM) stranded AA with 13 strands of #14 
annealed coated copper wires (one-third neutral). The outside diameter of the cable over the 
neutral strands is 1.29 in. (Appendix B, Kersting). Determine the phase impedance matrix 
and the sequence impedance matrix.

Fig.13 Three-phase 
concentric neutral cable 

spacing

Fig.14 Three-phase 
equivalent neutral cable 

spacing
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Solution
The data for the phase conductor and neutral strands from a conductor data table 
(Appendix A) are as follows:
•250,000 AA phase conductor:
•GMRp = 0.0171 ft
•Diameter = 0.567 in.
•Resistance = 0.4100 Ω/mile
•#14 copper neutral strands:
•GMRs = 0.00208 ft
•Resistance = 14.87 Ω/mile
•Diameter (ds) = 0.0641 in.
The radius of the circle passing through the center of the strands (Equation (73)) 
is
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The equivalent GMR of the concentric neutral is computed by

The equivalent resistance of the concentric neutral is

The phase conductors are numbered 1, 2, and 3. The concentric neutrals are 
numbered 4, 5, and 6.
A convenient method of computing the various spacings is to define each 
conductor using Cartesian coordinates. Using this approach the conductor 
coordinates are
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The off-diagonal terms of the spacing matrix are computed by

The diagonal terms of the spacing matrix are the GMRs of the phase conductors 
and the equivalent neutral conductors:

The resulting spacing matrix is
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The self-impedance for the cable in position 1 is

The self-impedance for the concentric neutral for cable #1 is

The mutual impedance between cable #1 and cable #2 is

The mutual impedance between cable #1 and its concentric neutral is

The mutual impedance between the concentric neutral of cable #1 and the 
concentric neutral of cable #2 is
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Continuing the application of the modified Carson's equations results in a 6 × 6 
primitive impedance matrix. This matrix in partitioned form is

Using the Kron reduction results in the phase impedance matrix:
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The sequence impedance matrix for the concentric neutral three-
phase line is determined using Equation (55):

(55)



Tape-Shielded Cables

72

ECpE Department

Fig.15 shows a simple detail of a tape-shielded cable. The cable consists of a 
central “phase conductor” covered by a thin layer of nonmetallic semiconducting 
screen to which is bonded the insulating material. The insulation is covered by a 
semiconducting insulation screen. The shield is bare copper tape helically 
applied around the insulation screen. An insulating “jacket” encircles the tape 
shield.

Fig.15 Tape-shielded cable
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Parameters of the tape-shielded cable are
•dc is the diameter of phase conductor (in.)
•ds is the outside diameter of the tape shield (in.)
•dod is the outside diameter over jacket (in.)
•T is the thickness of copper tape shield (mil)
Once again the modified Carson's equations will be applied to calculate the self-
impedances of the phase conductor and the tape shield as well as the mutual impedance 
between the phase conductor and the tape shield. The resistance and GMR of the phase 
conductor are found in a standard table of conductor data (Appendix A, Kersting).

Fig.15 Tape-shielded cable
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• Once again the modified Carson's equations will be applied to calculate the 
self-impedances of the phase conductor and the tape shield as well as the 
mutual impedance between the phase conductor and the tape shield. 

• The resistance and GMR of the phase conductor are found in a standard table 
of conductor data (Appendix A, Kersting).

• The resistance of the tape shield is given by

Fig.15 Tape-shielded cable

(76)
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The resistance of the tape shield given in Equation (76) assumes a resistivity of 
100 Ω-m and a temperature of 50°C. The outside diameter of the tape shield ds is 
given in inches and the thickness of the tape shield T in mil.
The GMR of the tape shield is the radius of a circle passing through the middle 
of the shield and is given by

Fig.15 Tape-shielded cable

(76)

(77)
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The various spacings between a tape shield and the conductors and 
other tape shields are as follows:
Tape shield to its own phase conductor

Tape shield to an adjacent tape shield

Tape shield to an adjacent phase or neutral conductor

where Dnm is the center-to-center distance between phase 
conductors.

ᵃ� ᵅ�ᵅ� = ᵃ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ� �ᵆ�ᵅ� �ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ� �ᵅ� ᵅ�ᵆ�ᵆ�ᵄ�ᵅ�ᵅ�ᵅ� �ᵅ�ᵅ� �ᵆ� ℎᵅ� �ᵅ� ℎᵄ�ᵆ�ᵅ� �ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ�ᵅ�ᵅ�ᵆ� �(ᵅ�ᵆ� )

ᵃ� ᵅ�ᵅ� = ᵃ� ᵅ�ᵅ� (ᵅ�ᵆ� )

(79)

(80)

(81)
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A single-phase circuit consists of a 1/0 AA, 220 mil insulation tape-shielded 
cable and a 1/0 CU neutral conductor as shown in Fig.16. The single-phase line 
is connected to phase b. Determine the phase impedance matrix.

Fig.16 Single-phase tape shield with neutral

Cable data: 1/0 AA
Outside diameter of the tape shield = ds = 
0.88 in.
Resistance = 0.97 Ω/mile
GMRp = 0.0111 ft
Tape shield thickness = T = 5 mil
Neutral data: 1/0 copper, 7 strand
Resistance = 0.607 Ω/mile
GMRn = 0.01113 ft
Distance between cable and neutral = Dnm 
= 3 in.
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The resistance of the tape shield is computed according to Equation (76):

The GMR of the tape shield is computed according to Equation (77):

The conductors are numbered such that
•#1 represents 1/0 AA conductor
•#2 represents tape shield
•#3 represents 1/0 copper ground
The spacings used in the modified Carson's equations are

ᵃ� 12 = ᵃ�ᵄ�ᵄ� ᵆ� ℎᵅ�ᵅ�ᵅ�ᵅ� = 0.0365

ᵃ� 13 =
3

12 = 0.25
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The self-impedance of conductor #1 is

The mutual impedance between conductor #1 and the tape shield (conductor #2) is

The self-impedance of the tape shield (conductor #2) is

The final primitive impedance matrix is
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In partitioned form, the primitive impedance matrix is

Applying Kron reduction method will result in a single impedance, which 
represents the equivalent single-phase impedance of the tape shield cable and 
the neutral conductor:

Since the single-phase line is on phase b, then the phase impedance matrix for 
the line is
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Fig.17 shows two concentric neutral parallel lines each with a separate grounded neutral 
conductor.
The process for computing the 6 × 6 phase impedance matrix follows exactly the same 
procedure as for the overhead lines. In this case, there are a total of 14 conductors (6 
phase conductors, 6 equivalent concentric neutral conductors, and 2 grounded neutral 
conductors). Applying Carson's equations will result in a 14 × 14 primitive impedance 
matrix. This matrix is partitioned between the sixth and seventh rows and columns. The 
Kron reduction is applied to form the final 6 × 6 phase impedance matrix.

Fig.17 Parallel concentric neutral underground lines
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Thank You!


